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A green and facile approach has been developed for the large-scale synthesis of nanosheets of reduced graphene oxide (rGO) and

nitrogenated reduced graphene oxide (N-rGO). This has been achieved by direct thermal decomposition of sucrose and glycine at

475 °C in ca. 7 minutes, respectively. The present protocols for synthesizing rGO and N-rGO are simple and environmentally

friendly as we do not use any harmful reagents, metal catalysts and solvents. Along with that, this method offers an inexpensive

route with high yields to prepare rGO with a high nitrogen content (20-25 atom %). To further improve the properties of the syn-

thesized rGO sheets, hydrogen treatment has been carried out to reduce the oxygen functional groups. Cyclic voltammograms and

charge—discharge experiments have been carried out to understand the supercapacitor behavior of rGO and hydrogen treated

(H-rGO) samples.

Introduction

Graphene, the one atom thick two-dimensional material of sp2-
hybridized carbon atoms has attracted much attention after its
discovery [1,2]. It is a fascinating material used in various ap-
plications owing to its excellent electrical, optical, mechanical
and thermal properties [3-5]. It has a unique electronic struc-
ture with a linear dispersion of Dirac electrons. Graphene oxide
(GO) and reduced graphene oxide (rGO) are chemically modi-
fied forms of graphene, which are extensively studied in the
field of science and engineering. Reduced graphene oxide has

attracted significant interest due to its similarities to pristine

graphene. It behaves like a semimetal or a semiconductor and is
therefore used in a variety of hybrid systems such as batteries
[6], electrodes [7] and photodetectors [8].

In 1958, Hummer and Offeman developed a chemical method
to synthesize graphene oxide by acid treatment of graphite [9].
The graphene oxide thus obtained contains oxygen functional
groups (-CO—, —COC-) on the surface and edges of the carbon
sheet, which lead to a disruption of the conjugated network and

the flow of charge carriers is reduced by several orders of mag-
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nitude [10]. Up to now, several methods including chemical
vapor deposition [11-13], arc discharge [14], aerosol pyrolysis
[15], mechanical exfoliation [1], solvothermal [16], hydrother-
mal synthesis [17], laser reduction of graphite oxide [18,19],
and photo thermal deoxygenation of graphene oxide by camera
flash have been developed to reduce the oxygen content of GO
in order to restore the conjugated network [20]. Recently, a
well-known chemical reduction method has been developed to
obtain rGO through the reduction of exfoliated GO using
various reducing agents such as hydrazine or dimethylhy-
drazine [21], NaBH4 [22], hydroquinone [23], or glucose [24].
However, these methods have not yet turned into a global
strategy to prepare pure rGO in a scalable fashion. Therefore,
searching for a new synthetic approach to obtain pure phases of
rGO is a highly desirable and great challenge for materials
chemists.

Herein, we report for the first time a generic and rapid method
for the synthesis of rGO nanosheets by direct thermal decompo-
sition of sugar, without the use of any solvents, metal catalysts,
reagents and hazardous chemicals. Similarly, N-rGO nano-

sheets have also been synthesized using glycine as precursor.

Beilstein J. Nanotechnol. 2020, 11, 68-75.

Results and Discussion

The typical XRD patterns of rGO and N-rGO nanosheets are
shown in Figure 1. The XRD pattern of the as-prepared rGO
(Figure 1a) exhibits a broad peak at 23.5° corresponding to an
interlayer d-spacing of 0.378 nm. The XRD pattern of N-rGO
(Figure 1b) shows a diffraction peak at 25.8° corresponding to
an interlayer d spacing of 0.345 nm. From the XRD patterns, it
is observed that the peak commonly obtained for GO around 26
of 10.3° does not appear indicating that the precursors were

directly converted into GO and N-rGO nanosheets.

Figure 2 shows the Raman spectra of the rGO and N-rGO nano-
sheets. The Raman spectrum of the rGO sample (Figure 2a)
shows D, G and 2D band at, respectively, 1362, 1594 and
2880 cm™!. The spectrum of the N-rGO sample (Figure 2b)
shows D, G and 2D band at, respectively, at 1354, 1581, and
2843 cm™!. The D-band is associated with the breathing modes
of six-membered carbon rings that are activated by defects and
structurally disordered, and the G-band originates from in-plane
vibrations of sp%-hybridized carbon atoms in the rGO domains.
The 2D-band is the second order of the D-band. The Raman
results are consistent with previous reports [5].
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Figure 1: XRD patterns of (a) rGO and (b) N-rGO nanosheets.
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Figure 2: Raman spectra of (a) rGO and (b) N-rGO nanosheets.
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Thermogravimetric analysis (TGA) was carried out to investi-
gate the thermal stability of the rGO and N-rGO nanosheets.
The study was performed in an oxygen atmosphere at a heating
rate of 3 °C-min~'. The results of rGO and N-rGO are shown in
Figure 3a and Figure 3b, respectively. The initial weight losses
occurring for rGO and N-rGO between room temperature and
ca. 150 °C can be attributed to the evaporation of physically
adsorbed water molecules.

100+
~ 80+ (a) rGO
S (b) N-rGO
~
4 604
=
2
é’ 404

20+

04 T T T T T T
100 200 300 400 500 600 700

Temperature (°C)

Figure 3: TGA curves of (a) rGO and (b) N-rGO nanosheets.

The second weight loss (93.4%) for tGO occurring between 350
and 540 °C can be ascribed to the decomposition of the carbon
network. For N-rGO nanosheets, a significant weight loss
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occurs in the temperature range between 400 and 625 °C, due to
the decomposition of N-rGO. The results are consistent with the
previous reports suggested in the literature [25,26].

Typical SEM and TEM images of rGO at different magnifica-
tions are shown in Figure 4a,b. The low-magnification SEM
image of the prepared rGO sample is composed of a large num-
ber of nanosheets, as shown in Figure 4a. The high-magnifica-
tion SEM image (Figure 4b) shows that the nanosheets possess
a smooth surface and are loosely stacked.

Energy-dispersive X-ray spectroscopy (EDS) was also
measured to determine the chemical composition of rGO.
Result from EDS shows (Figure 4c) that the product contains
only C and O. The atomic fractions of C and O are found to be
76.03% and 23.97%, respectively, as shown in the inset of
Figure 4c. The TEM image shown in Figure 4d indicates that
the rGO sample is comprised of nanosheets with a smooth sur-
face. The TEM image is in accordance with the SEM image
(Figure 4b) of the sample. The selected area electron diffrac-
tion (SAED) pattern of the rGO sheets (inset in Figure 4d)
shows a hexagonal pattern indicating the crystalline nature of
the rGO sheets.

SEM images of N-rGO are shown in Figure 5a,b. The SEM
images of N-rGO show morphological features that are similar

Figure 4: (a, b) SEM images, (c) EDS pattern and chemical composition (inset), and (d) TEM image and SAED pattern (inset) of the rGO nanosheets.
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to those of rGO. EDS shows (Figure 5c) that the product
contains only C, N and O. The atomic fractions of C, N and O
are found to be 66.26%, 21.94%, and 11.81%, respectively, as
shown in the inset of Figure 5c. The presence of nitrogen in the
as N-rGO sample is also confirmed by the estimation of N
content via CHNS analysis. The result shows that the weight
percentage of N element in the N-rGO nanosheets is found to be
approximately 20%, and this is in good agreement with the EDS
results.
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The TEM image in Figure 5d clearly shows that the N-rGO
sample is composed of nanosheets with a smooth surface. The
SAED pattern of the N-rGO sheet (inset in Figure 5d) shows a
hexagonal pattern suggesting the crystalline nature of the syn-
thesized N-rGO sheets.

AFM height images of as-prepared rGO and N-rGO nanosheets
are displayed in Figure 6a and Figure 6b, respectively. The rGO
and N-rGO nanosheets are flat with an average thickness of

Figure 5: (a, b) SEM images, (c) EDS pattern and chemical composition (inset), and (d) TEM image and SAED pattern (inset) of the N-rGO nano-

sheets.
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Figure 6: AFM images of (a) rGO and (b) N-rGO nanosheets.
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about 3 nm and 3.5 nm, respectively, with their lateral dimen-

sion in the range of several hundred nanometers.

The experimental process and the digital photographs of rGO
and N-rGO products are shown in Figure 7. Sucrose consists of
one molecule of glucose and one molecule of fructose. The
sucrose molecule contains —OH, -CH,OH, and —C-O-C- func-
tional groups. At a temperature of 475 °C in a pre-heated muftle
furnace, within a short period of time, sucrose undergoes cova-

lent cross-linking reactions yielding the formation of C—C and

Sucrose 475 +10 °C
~7 min

Glycine 475 +10 °C
~7 min

Figure 7: Schematic diagram of the formation of rGO and N-rGO
nanosheets.
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C=C bonds through the removal of water and CO,. It is finally
converted into a lightweight fluffy kind of material called
graphene oxide nanosheets. The product was left in a furnace
for ca. 7 min to get the pure phase without any impurities. The
fraction of oxygen in the prepared sample is ca. 24 atom %, as
measured with EDS, and the XRD pattern of the sample shows
a broad peak around 23.5°. Therefore, the obtained product can
be considered to be reduced graphene oxide. Similarly, glycine
also undergoes a cross-linking reaction with the removal of CO,
and H,O leading to the formation of nitrogen-doped reduced
graphene oxide nanosheets. For comparison we have also syn-
thesized rGO sheets at 400 and 600 °C as well. The correspond-
ing XRD patterns, Raman spectra and SEM images are given in
Figure S1 and Figure S2, respectively, in Supporting Informa-
tion File 1.

In order to understand the supercapacitor behavior of rGO and
H-rGO (hydrogen-treated rGO) samples, we have carried out
cyclic voltammetry and CD experiments with three-electrode
system using 1 M H;SOy as electrolyte (Figure 8).

CV curves of rGO and H-rGO at different scan rates from 5 to

200 mV-s~! vs Hg/Hg,SO, are shown in Figure 8a and
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Figure 8: CV curves for (a) rGO and (b) H-rGO samples at different scan rates; (c) specific capacitance for H-rGO at scan rates from 5 to
200 mV-s~1; (d) charge—discharge curves of rGO and H-rGO at a current density of 0.5 A-g~"
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Figure 8b, respectively. These curves show increase in current
density with decreasing scan rate, suggesting that the samples
have ideal capacitor characteristics. However, the H-rGO sam-
ple shows a higher current density and hence a higher specific
capacitance than rGO. The calculated specific capacitance
values from the CV of the rGO and H-rGO electrodes at
5 mV-s~! are 7 (not shown) and 139 F-g~!, respectively. We
have checked the rate capability of the working electrode at dif-
ferent scan rates of 10, 20, 40, 60, 80, 100, and 200 mV-s~! and
observed that the specific capacitance values were 96, 64, 43,
35, 30, 27 and 19 F-g~!, respectively (Figure 8c). For compari-
son, the charge—discharge (CD) curves for rGO and H-rGO
nanosheets were recorded at a current density of 0.5 A-g™! in
1 M H,SO,4 (Figure 8d). The specific capacitance values ob-
tained from the CD curves at a current density of 0.5 A-g~! for
rGO and H-rGO were 137 and 203 F-g~!, respectively. The CD
curve of H-rGO also shows a higher specific capacitance com-
pared to rGO. The higher specific capacitance of H-rGO is attri-
buted an increased conductivity due to the reduced number of
functional groups after hydrogen reduction of the rGO sample.
After 1000 cycles, the H-rGO sample shows 73% retention,
implying that the H-rGO has excellent stability (Figure 9). We
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Figure 9: Cycling stability of H-rGO.
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compared our result with other materials reported recently
(Table 1). For conductivity measurements, the H-rGO sample
was dispersed in ethanol and drop-cast on a gold gap electrode.
The average resistance measured using a Keithley source meter
is ca. 4 MQ. The corresponding electrical conductivity ob-
tained for H-rGO is ca. 0.068 S/m.

Conclusion

In conclusion, we present a very simple and efficient method
for the successful synthesis of nanosheets of rGO and of rGO
with high nitrogen content by the thermal decomposition of
sucrose and glycine. We measured the specific capacitance and
carried out charge—discharge experiments. The rGO nanosheets
that were hydrogen-treated (H-rGO) showed good supercapac-
itor behavior.

Experimental

Preparation of rGO and N-rGO nanosheets
Sucrose in the form of granulated table sugar from a retail store
and analytical grade glycine from Sigma-Aldrich were pur-
chased and used without further purification. Reduced graphene
oxide (rGO) was prepared by using granulated table sugar. 2.0 g
of sucrose was taken in a 100 mL borosil glass beaker. Then,
the beaker was directly introduced into the preheated muffle
furnace maintained at 475 + 10 °C in oxygen atmosphere. The
sugar undergoes dehydration, producing a black foam in
ca. 7 min. Finally, the resultant product was collected for
further analysis. A similar procedure was followed to prepare
N-rGO using glycine as precursor.

Hydrogen treatment of rGO nanosheets
Hydrogen-treated reduced graphene oxide (H-rGO) was ob-
tained as follows. 0.5 g of the rGO sample was taken in a
ceramic boat and placed in a tube furnace. The sample was
heated at 700 °C for 1 h in a continuous flow of Hy/Ar gas
(5% hydrogen gas with Argon). After the reaction, the
temperature was allowed to cool down to room temperature
naturally. The resulting product was collected and used for
the electrochemical supercapacitor measurements. The ob-
tained results were compared with the as-synthesized rGO
nanosheets.

Table 1: Comparison of the specific capacitance of H-rGO sheets with reported values.

material structure

porous electrochemically rGO  nanosheets
graphene oxide nanosheets
RGO/H,PO, nanosheets
RGO nanosheets
H-rGO nanosheets

specific capacitance (F-g~1) reference
81+3 [27]
121 [28]
101 [29]
90 [29]
139 this work
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Materials characterization

The samples were characterized using transmission electron
microscopy (TEM), atomic force microscopy (AFM), X-ray
diffraction (XRD) and thermogravimetric analysis (TGA).
X-ray diffraction patterns of the samples were collected in the
range of 10-70° (20) using a Bruker D8 diffractometer with a
Cu Ka source (A = 0.154178 nm). The morphology of the sam-
ples was examined using a Tescan Mira3 field-emission scan-
ning electron microscope (FESEM) equipped with an energy-
dispersive X-ray spectroscopy (EDS). The TEM, HRTEM
images and SAED patterns were obtained on a TALOS F200S
G2, 200 kV FEG, and a CMOS camera (4k x 4k). The TEM
samples were prepared by suspending the samples in ethanol,
using an ultrasonic bath, and subsequent dripping of the suspen-
sion on the grid and drying. Raman spectra of the samples were
recorded using a Jobin Yvon LabRam HR spectrometer with a
514 nm Ar laser. Thermogravimetric analysis of the samples
was carried out in an oxygen flow with a heating rate of
3 °C-min"! using a Mettler-Toledo-TG-850 apparatus. AFM
measurements were performed using a CP2 atomic force micro-

scope.

Electrode preparation and electrochemical

characterization

The catalyst inks of as-synthesized rGO and reduced graphene
oxide H-rGO were prepared by ultrasonication separately. A
mixture of 4.0 mg rGO and 0.025 wt % (5 puL) of Nafion in
0.4 mL of dimethylformamide (DMF) was sonicated until a ho-
mogeneous dispersion was obtained. 3 pL catalyst ink was
taken and drop-cast onto a glassy carbon electrode, which was
allowed to dry at room temperature. A similar procedure was
followed to prepare the H-rGO electrode. The electrochemical
studies, including cyclic voltammetry (CV) and chronopoten-
tiometry charge—discharge (CD), were carried out at room tem-
perature in 1 M H,SOy4 solution in a standard three-electrode
cell using an electrochemical workstation CHI 660E. This
system consists of a glassy carbon working electrode (3 mM), a
platinum wire counter electrode and a Hg/Hg,SO, reference
electrode with 1 M H,SOy electrolyte. The specific capacitance
(SC) of rGO and H-rGO was calculated from CV curves, ac-
cording to Equation 1:

sc:jldV/zvm-AV, (1)

where [IdV is the area under the CV curve, m is the mass of the
active material, v is the potential scan rate (V/s), and AV is the
potential window. We have also calculated the specific capaci-
tance from CD curves using Equation 2:

SC=It/m-AV, )

Beilstein J. Nanotechnol. 2020, 11, 68-75.

where [ is the current, ¢ is the time of the discharge cycle, m is
the mass of the active material, and AV is the potential window

of the discharge cycle.

Supporting Information

Supporting Information File 1

Additional experimental data.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-11-7-S1.pdf]
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